1154 Jakob Kellner And

نویسنده

  • Greg Hjorth
چکیده

We present a method to iterate finitely splitting lim-sup tree forcings along non-wellfounded linear orders. As an application, we introduce a new method to force (weak) measurability of all definable sets with respect to a certain (non-ccc) ideal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sacks real out of nowhere

There is a proper countable support iteration of length ω adding no new reals at finite stages and adding a Sacks real in the limit.

متن کامل

Winning the pressing down game but not Banach-Mazur

Let S be the set of those α ∈ ω2 that have cofinality ω1. It is consistent relative to a measurable that the nonempty player wins the pressing down game of length ω1, but not the Banach Mazur game of length ω+1 (both games starting with S).

متن کامل

F–Products and Nonstandard Hulls for Strongly Continuous One–parameter Semigroups of Linear Operators

We give an overview of the F–product construction and the corresponding nonstandard constructions and show that (in the case of bounded ultrapowers) both constructs are isomorphic (theorem 3.15). From this we also follow a little “classical” corollary (3.14). The nonstandard construction has been investigated in [Wol84] and [Wol], the corresponding classical constructions first appeared in [Der...

متن کامل

F-products and nonstandard hulls for semigroups

Derndinger [Der80] and Krupa [Kru90] defined the F–product of a (strongly continuous one–parameter) semigroup (of linear operators) and presented some applications (e.g. to spectral theory of positive operators, cf. [EN00]). Wolff (in [Wol84] and [Wol00]) investigated some kind of nonstandard analogon and applied it to spectral theory of group representations. The question arises in which way t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011